Tuesday, March 25, 2008

MySQL Information Schema applications at the UC2008

Last week I blogged about the upcoming MySQL Users conference, in particular about the Writing MySQL UDFs tutorial that I will be delivering.

I will also be doing the Grand Tour of the Information Schema and its Applications.


I will discuss the elements in the MySQL information schema, and provide tips to write queries against it. Most of the talk will revolve around a number of scripts I have developed over the past few years:

  • Generating a history/audit database - generate all the code you need to keep track of all changes occurring in your on-line database. Use it to audit or implement 'flashback'

  • Checking foreign key violations - disabling foreign key checks may be useful, but is dangerous. This script helps you find problems with foreign key constraints

  • Creating federated tables - FEDERATED tables are useful, but tedious and error-prone to create. Let this script do the work instead

  • Checking for duplicated and redundant indexes - Redundant or duplicate indexes can slow down your database performance. Find them with this script (Note: the original script I blogged about earlier contains a critical flaw - this is a completely new version)

I also have a few new information schema tricks up my sleeve. Without giving away too much, take a look at this little conversation I just had with my MySQL command line client:

mysql> call qwz.qwz(null);
+-----+------------------------------------------------------------------+
| | Welcome to the command line Query Wizard for MySQL!!! |
+-----+------------------------------------------------------------------+
| 1 | Set the schema (current: world) |
| --- | ---------------------------------------------------------------- |
| 2 | Choose a table |
+-----+------------------------------------------------------------------+
3 rows in set (0.00 sec)

Yes! It's an interactive query wizard for the command line. I don't want to spoil too much, but I can unveil that I will be presenting a full-fledged interactive query wizard that operates completely from the MySQL command line. It's just a stored procedure - no proxy, no UDFs, no plugins or whatever.

To give you a taste of the possibilities, take a look at the continuation of my session with the query wizard. First let's choose the schema:

mysql> call qwz.qwz(1);
+----+------------------------+
| | Set the default schema |
+---+------------------------+
| 1 | information_schema |
| 2 | mysql |
| 3 | qwz |
| 4 | sakila |
| 5 | world |
+---+------------------------+

Let's settle for the sakila schema:

mysql> call qwz.qwz(4);

This will prompt us to choose a table from the sakila schema:

+-----+------------------------------------------------------------------+
| | The command line Query Wizard for MySQL |
+-----+------------------------------------------------------------------+
| 1 | Set the schema (current: sakila) |
| --- | ---------------------------------------------------------------- |
| 2 | actor |
| 3 | actor_info |
| 4 | address |
| 5 | category |
| 6 | city |
| 7 | country |
| 8 | customer |
| 9 | customer_list |
| 10 | film |
| 11 | film_actor |
| 12 | film_category |
| 13 | film_list |
| 14 | film_text |
| 15 | inventory |
| 16 | language |
| 17 | nicer_but_slower_film_list |
| 18 | payment |
| 19 | rental |
| 20 | sales_by_film_category |
| 21 | sales_by_store |
| 22 | staff |
| 23 | staff_list |
| 24 | store |
+-----+------------------------------------------------------------------+
26 rows in set (0.00 sec)

Query OK, 0 rows affected (0.00 sec)

Let's pick the rental table:

mysql> call qwz.qwz(19);

Once we selected the initial table, we can now build a join path, and we are prompted to pick any of the tables related to rental:

+-----+------------------------------------------------------------------+
| | Join path: + tables are added / - tables are removed |
+-----+------------------------------------------------------------------+
| | sakila.rental |
| 1 | + sakila.customer (fk_rental_customer) |
| 2 | + sakila.inventory (fk_rental_inventory) |
| 3 | + sakila.staff (fk_rental_staff) |
| --- | ---------------------------------------------------------------- |
| 4 | Choose columns |
| --- | ---------------------------------------------------------------- |
| 5 | New Query |
+-----+------------------------------------------------------------------+
8 rows in set (0.20 sec)

Query OK, 0 rows affected (0.20 sec)

Let's extend the join path with the customer table:

mysql> call qwz.qwz(1);
+-----+------------------------------------------------------------------+
| | Join path: + tables are added / - tables are removed |
+-----+------------------------------------------------------------------+
| | sakila.rental |
| 1 | - sakila.customer (fk_rental_customer) |
| 2 | + sakila.address (fk_customer_address) |
| 3 | + sakila.store (fk_customer_store) |
| 4 | + sakila.inventory (fk_rental_inventory) |
| 5 | + sakila.staff (fk_rental_staff) |
| --- | ---------------------------------------------------------------- |
| 6 | Choose columns |
| --- | ---------------------------------------------------------------- |
| 7 | New Query |
+-----+------------------------------------------------------------------+
10 rows in set (0.09 sec)

Query OK, 0 rows affected (0.09 sec)

Let's throw in the inventory table in the mix too:

mysql> call qwz.qwz(4);
+-----+------------------------------------------------------------------+
| | Join path: + tables are added / - tables are removed |
+-----+------------------------------------------------------------------+
| | sakila.rental |
| 1 | - sakila.customer (fk_rental_customer) |
| 2 | + sakila.address (fk_customer_address) |
| 3 | + sakila.store (fk_customer_store) |
| 4 | - sakila.inventory (fk_rental_inventory) |
| 5 | + sakila.film (fk_inventory_film) |
| 6 | + sakila.store (fk_inventory_store) |
| 7 | + sakila.staff (fk_rental_staff) |
| --- | ---------------------------------------------------------------- |
| 8 | Choose columns |
| --- | ---------------------------------------------------------------- |
| 9 | New Query |
+-----+------------------------------------------------------------------+
12 rows in set (0.10 sec)

Query OK, 0 rows affected (0.10 sec)

We can keep this up quite a long time, and we can remove tables from our join path in a similar way. We can then start specifying some columns:

mysql> call qwz.qwz(8);
+-----+------------------------------------------------------------------+
| | Choose columns for the SELECT list |
+-----+------------------------------------------------------------------+
| | sakila.rental.* |
| | --------------- |
| 1 | + rental_id |
| 2 | + rental_date |
| 3 | + inventory_id |
| 4 | + customer_id |
| 5 | + return_date |
| 6 | + staff_id |
| 7 | + last_update |
| | --------------- |
| | sakila.customer.* (fk_rental_customer) |
| | -------------------------------------- |
| 8 | + customer_id |
| 9 | + store_id |
| 10 | + first_name |
| 11 | + last_name |
| 12 | + email |
| 13 | + address_id |
| 14 | + active |
| 15 | + create_date |
| 16 | + last_update |
| | -------------------------------------- |
| | sakila.inventory.* (fk_rental_inventory) |
| | ---------------------------------------- |
| 17 | + inventory_id |
| 18 | + film_id |
| 19 | + store_id |
| 20 | + last_update |
| --- | ---------------------------------------------------------------- |
| 21 | New Query |
+-----+------------------------------------------------------------------+
30 rows in set (0.02 sec)

Query OK, 0 rows affected (0.02 sec)

Currently I'm still working on a multiple select interface, but for now I'll snip out all but the last individual column selection:

mysql> call qwz.qwz(18);
+-----+------------------------------------------------------------------+
| | SELECT list: + columns are added / - columns are removed |
+-----+------------------------------------------------------------------+
| | sakila.rental.* |
| | --------------- |
| 1 | + rental_id |
| 2 | - rental_date |
| 3 | + inventory_id |
| 4 | + customer_id |
| 5 | + return_date |
| 6 | + staff_id |
| 7 | + last_update |
| | --------------- |
| | sakila.customer.* (fk_rental_customer) |
| | -------------------------------------- |
| 8 | + customer_id |
| 9 | + store_id |
| 10 | - first_name |
| 11 | - last_name |
| 12 | + email |
| 13 | + address_id |
| 14 | + active |
| 15 | + create_date |
| 16 | + last_update |
| | -------------------------------------- |
| | sakila.inventory.* (fk_rental_inventory) |
| | ---------------------------------------- |
| 17 | + inventory_id |
| 18 | - film_id |
| 19 | + store_id |
| 20 | + last_update |
| --- | ---------------------------------------------------------------- |
| 21 | Show SQL |
| --- | ---------------------------------------------------------------- |
| 22 | Explain SQL |
| --- | ---------------------------------------------------------------- |
| 23 | Execute SQL |
| --- | ---------------------------------------------------------------- |
| 24 | New Query |
+-----+------------------------------------------------------------------+
36 rows in set (0.03 sec)

Query OK, 0 rows affected (0.03 sec)

Now is a good moment to inspect the SQL underlying our query:

mysql> call qwz.qwz(21);

+-----+----------------------------------------------------------------------------+
| | The command line Query Wizard for MySQL |
+-----+----------------------------------------------------------------------------+
| | SELECT t1.rental_date |
| | ,t2.first_name |
| | ,t2.last_name |
| | ,t8.film_id |
| | FROM sakila.rental AS t1 |
| | INNER JOIN sakila.customer AS t2 ON (t1.customer_id) = (t2.customer_id) |
| | INNER JOIN sakila.inventory AS t8 ON (t1.inventory_id) = (t8.inventory_id) |
| --- | ---------------------------------------------------------------- |
| 1 | Execute SQL |
| --- | ---------------------------------------------------------------- |
| 2 | Explain SQL |
| --- | ---------------------------------------------------------------- |
| 3 | Choose columns |
| --- | ---------------------------------------------------------------- |
| 4 | New Query |
+-----+----------------------------------------------------------------------------+
15 rows in set (1.21 sec)

Query OK, 0 rows affected (1.21 sec)

And we can execute it, or run EXPLAIN on it:

mysql> call qwz.qwz(2);
+----+-------------+-------+--------+----------------------------------------+---------------------+---------+------------------------+------+-------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-------+--------+----------------------------------------+---------------------+---------+------------------------+------+-------+
| 1 | SIMPLE | t8 | index | PRIMARY | PRIMARY | 3 | NULL | 4673 | |
| 1 | SIMPLE | t1 | ref | idx_fk_inventory_id,idx_fk_customer_id | idx_fk_inventory_id | 3 | sakila.t8.inventory_id | 1 | |
| 1 | SIMPLE | t2 | eq_ref | PRIMARY | PRIMARY | 2 | sakila.t1.customer_id | 1 | |
+----+-------------+-------+--------+----------------------------------------+---------------------+---------+------------------------+------+-------+
3 rows in set (0.00 sec)

As you can imagine, quite a good deal of information schema hacking going on here.

Code will be released in full immediately after my talk, and if there is sufficient interest I will discuss the internals of the qwz stored procedure in full.

1 comment:

DuckDB Bag of Tricks: Reading JSON, Data Type Detection, and Query Performance

DuckDB bag of tricks is the banner I use on this blog to post my tips and tricks about DuckDB . This post is about a particular challenge...